
Research Division
Almaden �� T.J. Watson �� Tokyo �� Zurich � Austin

RC 21266 (94906) 27AUGUST98
Computer Science/Mathematics 10 pages

Research Report
Separating Context and Coordination:

Lessons from design wisdom and social theory leading to
adaptivity and adaptability through shearing layers

Yorktown Heights, NY 10598
Palisades, NY 10964-8001P.O. Box 218

Route 9WT.J. Watson Research Center
IBM Advanced Business InstituteIBM Research Division

David IngIan Simmonds

LIMITED DISTRIBUTION NOTICE
This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a
Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM
prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by
reprints or legally obtained copies of the article (e.g., payment of royalties).

ABSTRACT
The goal of software engineering is to produce effective
software systems efficiently. Software systems supporting
businesses should effectively support people in doing their
work, be it managerial or clerical, highly technical or highly
social, exploratory or procedural. At the same time, the
practices of software producing organizations should be
designed to deliver effective systems on a reasonable sched-
ule and at reasonable cost. Engineering practices determine
the nature of resulting software systems, and are themselves
typically determined by technology preferences.

This paper presents some findings of an ongoing interdis-
ciplinary investigation into the nature of information
systems and the organizations that use and produce them.

In regrounding both information systems and our earlier
work on business specifications within a conceptual frame-
work that combines elements of design ‘wisdom’ and social
theory, our underlying assumptions evolve dramatically.
We become preoccupied with ideas such as valued incom-
pleteness, federated implementation, just-in-time adaptation
by ‘users,’ and the distinction between technology and its
application. At the same time, we lower our expectations in
the hunt for reusable domain models, and lessen the distinc-
tion between business design and software design.

Key to this regrounding are a distinction between
‘context’ and ‘coordination,’ and Stewart Brand’s ‘shearing
layers’ model of architectural change.

KEYWORDS
behavioral specification, business design, context, coordi-
nation, design wisdom, domain modeling, engineering
ethics, interdisciplinary approaches, shearing layers,
software design, social theory, systems thinking.

1. A RESPONSE TO ALEXANDER’S CRITICISM
In his keynote speech at OOPSLA ‘96, architect Christo-
pher Alexander — invited because of the extent to which
his work was being cited within the OO design patterns
community [19,20] — made the following observation:

Please forgive me. I’m going to be very directly blunt for a
horrible second. But it could be viewed that the technical way
in which you [software designers and theorists] look at
programming at the moment is almost like ‘guns for hire.’ In
other words, you are the technicians, you know how to make
the programs work, ‘tell us what to do Daddy, and we’ll do it.’

In other words, Alexander was suggesting that today’s
software engineering theory and practice is — like that of
architecture — too oriented towards ‘doing the thing right’,
and at the significant expense of ‘doing the right thing’.

So what is the ‘right thing?’ How do we go about making
sure that we ‘do it?’ This paper attempts to answer these
questions for the engineering of business systems.

1.1.Software engineering’s ‘right thing’ is constructing
information tools that can be adapted by adaptive
purposeful teams as their environment changes

Software developers are often brought into projects of high
complexity or with tight delivery dates. As such, they are
under a great deal of pressure to ‘do the thing right’ — to
develop or maintain software with high efficiency.

The widely accepted ‘right’ approach of interviewing and
understanding user requirements presumes that the business
community itself has a full comprehension of the ‘right
thing’ [28,62]. Unfortunately, since so much human knowl-
edge is tacit [53], there is some probability that users are no
more aware of or able to articulate what the ‘right thing’ is
than software engineers.

Thus, we assert that software engineering should preoc-
cupy itself with the search for practices and technologies
that allow for adaptation of their end product, and in the
strongest possible sense of the word. This will involve
doing everything conceivable to ensure that software will
not get in the way of users as they respond to the ever
changing demands of the world. It is about encouraging
users to reflect on their own practices, and to take

1

Separating context and coordination:
lessons from design wisdom and social theory leading to

adaptivity and adaptability through shearing layers

+1-416-410 5958+1-914-784 7987
daviding@ca.ibm.comsimmonds@us.ibm.com
NY 10964-8001, USANY 10532, USA
Route 9W, Palisades30 Saw Mill River Road, Hawthorne

IBM Advanced Business InstituteIBM T J Watson Research Center
David IngIan Simmonds

responsibility for designing the best possible software tools
to support their ever improving practices. It is about
software technologies and engineering practices that reduce
burdens on users as they take on that responsibility.

1.2. Deployment of ‘designed things’ including software
involves intervening in a larger system

All buildings are predictions. All predictions are wrong.

Brand’s observation about buildings [10] is also appropriate
for organization designs and software.

The full consequences of change to any highly complex
and incompletely understood system can not be predicted.
As complexity theory tells us, even small changes may lead
to catastrophe.

Change itself is not the problem. It is the occasionally
discontinuous consequences of accumulating small changes
(together with unavoidable measurement errors) that causes
forecasts and extrapolations to be practically useless. Some
recent examples prove this point. If in 1993 someone had
predicted that every software developer would need to
intimately understand Internet Protocol, they would have
probably been laughed off the podium. In 1995, if someone
had suggested that C++ would be dethroned by a language
proposed for set-top boxes for televisions, a similar
response would not have been considered unreasonable.

Yet few change agents — of which software engineers are
consciously or unconsciously prime examples — fully
acknowledge that each of their interventions may have
systemic, discontinuous consequences. Every change may
lead to an unintended discontinuity (for ‘good’ or ‘bad’).

Moreover, Brand reminds us of the need for designing for
adaptivity [10]: “An old saw of biology decrees: ‘The more
adapted an organism to present conditions, the less adapt-
able it can be to unknown future conditions.’” Of course,
the same is true for complex systems in general, and for
software and human organizations in particular.

Thus, interventionist approaches focus on ontological and
epistemological challenges [28]. The chief ontological
challenge is related to how to get a good understanding (or
representation) of the target system — is this really how the
business works? The corresponding epistemological
challenge is to ensure that the method by which we gain the
knowledge is ‘correct’ — how do we know that our inter-
viewees are providing good (open and adaptive) organiza-
tional perspectives, rather than a personal bias or a naive or
skewed misconception of what is ‘right’?

1.3. Rephrasing the business specification / business
design distinction as context and coordination

Our survey of design wisdom has led us to reconsider our
earlier work on information modeling. In particular, it has
led us to reformulate an earlier distinction between
‘business specification’ and ‘business design’ as a

distinction between ‘context’ and ‘coordination.’ The goal
of this paper is to document that regrounding based upon
our recent interdisciplinary work on understanding the
nature of information systems and the organizations that use
and produce them.

Design wisdom considers design from the point of view
of how ‘designed things’ are received and understood by
their ‘users,’ and subsequently adapted by them for ‘use.’ If
we believed that these intuitions had reached a sufficient
level of maturity we would term them the ‘sciences of inter-
vention and design,’ but for the moment we refer to them
simply as ‘design wisdom.’ In contrast, there is a scientific
theory of human adaptation to change. This is in the social
— rather than the natural — sciences, since the ultimate
object of study is the human world.

Information modeling [32,33,39] has its origin in a mix of
theory, practice and intuition: theory in the form of mathe-
matics and formal methods; practice in the form of consid-
erable experience in the production of large data processing
and information systems; and intuitions about the need for,
role of, acceptability and accessibility of specifications.

Information modeling is one of a growing number of
rigorous approaches to the behavioral specification of
business and software semantics [36,37,40,41] which are
ultimately grounded in mathematical algebras and category
theory. It allows for precise specification of behavior
(function), whereas software design brings in details of
implementation (structure) which is itself determined by
current and ephemeral technologies and practices. (Here we
use ‘function’ and ‘structure’ in the strict technical sense of
systems science [1])

A number of higher order concepts and approaches were
suggested by experience with the practical application of
behavioral specifications [5,35,38,57]. These include:
higher order business patterns [42,43]; the role of behav-
ioral specifications in refinement-based approaches to
system development [44]; and the management of business
rules [45]. In particular, we drew a distinction between
business specification, business design, system specification
and system design, leading to the extension of the informa-
tion modeling approach with a notion of ‘context’ [44].
This paper further refines several of these notions.

However desirable its rigorous mathematical foundations
may be, many of the intuitions underlying this earlier work
can be better justified in terms of design ‘wisdom’ and
social theory. Moreover, this regrounding better demon-
strates the complementarity of information modeling to a
wide variety of other information system development
approaches — notably systems engineering [59,60] and
intervention-conscious approaches [17,28] — allowing us
to assemble a much richer, and more comprehensive
approach. Indeed we now suspect that we can unify organi-
zation design and information system development upon a
single conceptual (behavioral) basis.

2

1.4. Business adaptiveness comes from carefully distin-
guishing context and coordination

The theme of ‘context and coordination,’ and the emphasis
on design for adaptation, are taken from Steve Haeckel’s
work on the ‘Sense and Respond Organization’ [25]:

Over the last two decades the ‘command and control’
management system of industrial age firms — characterized by
elaborate plans and large central staffs — has been abandoned
by many large companies because it proved too slow and
inflexible. Companies adopting the sense-and-respond
approach must replace command and control with a
governance system that provides ‘context and coordination’ for
empowered teams.

With the turmoils of downsizing and then reengineering,
‘command and control’ has unfortunately degenerated into
‘communicate and hope.’ The empowerment of individuals
has led to a world where they are no longer considered as
gears in a mechanism, or organs in an organism, but instead
are recognized as purposeful and adaptive. As such, they
are looked to to create their own corporate future [3,4].

The design of an adaptive enterprise can be achieved
through a dual emphasis on context and coordination.
Context sets purpose and bounds of acceptable behavior for
an enterprise comprised of individuals, while coordination
takes advantage of the human ability to deal with uncer-
tainty and ambiguity. This approach ‘shifts the burden’ [54]
from parts that cannot handle system complexities and
ambiguities well — such as business policies handed down
from the higher ranks — to other parts of the business
system that can adapt and learn — empowered, purposeful
groups of people.

Thus the distinction between context and coordination
renders explicit and separates the subject of adaptation
(context) from the adaptive human agents that bring about
change in response to ambiguity and uncertainty
(coordination).

2. INDIVIDUALS AND GROUPS ADAPT DESIGNED
THINGS ALONG SHEARING LAYERS

Really good design results in designed things — such as
buildings — that are ‘loved’ [10]:

Age plus adaptability is what makes a building come to be
loved. The building learns from its occupants, and they learn
from it.

The design wisdom that we refer to here is that documented
by Stewart Brand in How Buildings Learn [10], and can be
summarized as follows: designed things must be able to
change in qualitatively different ways over qualitatively
different time scales.

2.1. Design and time: adaptation is in response to quali-
tatively different kinds and rates of change

Most designed things are sufficiently durable that they are
ultimately adopted and adapted (or rejected and replaced)
by several different communities of people. Thus it is not
surprising that many similar issues have arisen across

radically different classes of design — from cars to space
shuttles, houses to factories, startups to multinationals — or
that design wisdom can easily be shared across design
disciplines.

When Stewart Brand set out to understand the class of
complex designed thing called a ‘learning organization’ he
chose, by analogy, to study buildings [10]:

My approach is to examine buildings as a whole — not just
whole in space, but whole in time. Some buildings are
designed and managed as a spatial whole, none as a temporal
whole. In the absence of theory or standard practice in the
matter, we can begin by investigating: What happens anyway
in buildings over time?

Among the many fascinating insights in Brand’s How
Buildings Learn [10] is his ‘shearing layers’ model of archi-
tectural change, which draws a distinction between:

SITE — This is the geographical setting, the urban location,
and the legally defined lot, whose boundaries outlast
generations of ephemeral buildings. ...
STRUCTURE — The foundation and load-bearing elements
are perilous and expensive to change, so people don’t. These
are the building. Structural life ranges from 30 to 300 years ...
SKIN — Exterior surfaces now change every 20 years or so, to
keep up with fashion or technology, or for wholesale repair. ...
SERVICES — These are the working guts of a building:
communications wiring, electrical wiring, plumbing, sprinkler
system, HVAC (heating, ventilation, and air conditioning), and
moving parts like elevators and escalators. They wear out or
obsolesce every 7 to 15 years. Many buildings are demolished
early if their outdated systems are too deeply embedded to
replace easily.
SPACE PLAN — The interior layout, where walls, ceilings,
floors, and doors go. Turbulent commercial space can change
every 3 years; exceptionally quiet homes might wait 30 years.
STUFF — Chairs, desks, phones, pictures; kitchen appliances,
lamps, hair brushes; all the things that twitch around daily to
monthly. Furniture is called mobilia in Italian for good reason.

Much of Brand’s book consists of illustrations of these
qualitatively different kinds and rates of change. One series
of time lapse pictures, taken over a period of 6 years, shows
changes to the stuff, space plan, services and even detailed
structure of part of an old warehouse building as the startup
company occupying it grows in size and complexity.
Eventually the startup moves out and is replaced with
several other companies, each with radically different needs
yet still able to fit into the same basic structure. The time
lapse pictures allow you to see the shearing happening
before your very eyes in a manner that goes unnoticed in
daily life.

While Brand has already suggested that shearing layers is
a concept that can be transferred from buildings to organi-
zations, software engineers should also try to apply it in
their own design work. We must ask ourselves, what are
the shearing layers of relevance to information systems,
within their domains of application, and within their
domains of construction?

3

2.2. Inquiry is a feedback loop through which contexts
are adapted as a result of coordination experience

Skilled designers recognize good design when they see it.
In his keynote speech at OOPSLA '97, Alan Kay expressed
his deep admiration for the design of the US constitution,
which was formed complete with counterbalancing institu-
tions to interpret and amend it. It is an expression of shared
societal wisdom — societal commitments for governing US
society — that flourishes partly because people are free to
question everything about it, including the very parts
designed to give them that freedom of speech.

The formal design of an inquiry system — as defined by
Churchman [13] and, more recently, by Mitroff and
Linstone [49] — not only reflects the current knowledge
within an organization, but also ongoing learning that
allows the organization to continue to adapt. Only when a
spirit of inquiry exists does an information system help a
business to reach an understanding of its environment.

Haeckel focuses inquiry on context and coordination [25].
Context corresponds to Brand’s strong, load-bearing struc-
tural layer, while coordination corresponds to stuff and
space plan, and is likewise left to the organization’s current
occupants. Good context allows coordination — on all
scales — to occur naturally.

3. SOCIETY ADAPTS BOTH LANGUAGE AND
PRACTICES IN SHEARING LAYERS

Human language and practices evolve due to the inevitably
different dispositions of people, who are different simply
because their trajectories through life cannot be identical.
Kittell demonstrates this [47] by tracing the:

evolution of the office of general receiver of Flanders from
1262 to 1372 and proposes that the emergence of such offices
was a crucial factor in the formation of the modern state during
the Middle Ages. ... [Y]et careful examination of a wide
variety of Flemish financial records reveals that the count of
Flanders had no preconceived plan for the creation of a central
financial office. Instead, the office was formed and sustained
by an internal dynamic in which ad hoc actions evolved into
administrative routine ...

It is a mistake to think of human practices and language as
an integrated whole. They have a richly differentiated struc-
ture that is reproduced and evolves — sometimes with
discontinuities — in shearing layers and on many different
time scales.

3.1. Individual learning occurs on a trajectory through
ad hoc and designed formative contexts

Individual human learning occurs in a manner analogous to
Brand’s shearing layers in architecture. On the one hand,
there are temporary, short term changes analogous to the
rearrangement of stuff and space layout. At the same time
— and much more subtle and potentially devastating —
these slowly occurring and more permanent adaptations
accumulate in the deep and buried structures of habit and
experience. These latter adaptations are referred to by a
wide variety of common sense terms (with various emotive

connotations) from ‘learning’ and ‘training’ through 'burn-
out' to ‘brainwashing’ [30].

As Bourdieu’s notion of trajectory suggests [9], poten-
tially all aspects of the contexts through which a person
passes may exert a formative influence upon them. In
particular, as Ciborra notes [14], the software produced by
software engineers — along with business procedures,
office furniture, and so on — exerts a formative influence
on its users, either mental or physical. Thus software should
be rigorously designed with both short term and long term
formative effects in mind.

It is partly the societal need for careful transmission —
from one generation to the next — of accumulated societal
wisdom about goodness of disposition and design, that led
to the emergence of the reproductive and regulative fields.
Also known as education and law, these are enshrined in
institutions such as schools and universities, and laws, for
example, against the abusive treatment of children.

Yet as we know from design wisdom, any desired forma-
tive influences on trajectory are predictions, and predictions
are wrong. Thus the institutions (explicitly or implicitly)
designed to reproduce societal wisdom must inevitably also
foster the continued trial, error and adaptation of evolution.

3.2. Practices shared across teams or industries are
slowly evolving and durable, with occasional
discontinuities

The reproductive fields of education and law do not exist to
produce a homogeneous next generation. Rather, they exist
to reproduce [8] a richly differentiated structure of society
which consists of many human roles, trades and
professions, attitudes and beliefs, and so on. They are built
upon the societal wisdom that this diversity is valuable.

In her study of the office of general receiver of Flanders
quoted above [47], Kittell illustrates the typical cycle of the
ad hoc evolution of practices, in which (i) new contexts
arise out of necessity leading (ii) to new, improvised
practices which (iii) themselves get transmitted through
conscious or unconscious mentorship. These practices then
(iv) get raised into awareness through the introduction of
new language and (v) ‘symbolic capital’ [7] (in this case,
the position of ‘general receiver’) and (vi) ultimately get
incorporated into academic curricula (in this case, the
specialized field of governmental accountancy).

Gibson-Jarvie makes a similar point about the City of
London [22]:

In the later seventeenth century [...] coffee houses were
opening up, as the new beverage increased in popularity.
Lloyd’s, Jonathan’s, the Jamaica, the Jerusalem, the Antwerp
and others established for themselves a special position in the
City as the recognized, though not always official,
headquarters of many of its budding institutions. [...]
Merchants tended to gravitate towards particular houses where
members of one or possibly a few trades, or those dealing with
a particular locality, would form the major part of the
proprietor’s clientele.

4

With his notion of the cultural arbitrary [9], Bourdieu
points out that this process of evolutionary selection of
language for reproduction in successive generations — such
as the name Lloyds for London’s marine insurance market
— is inherently arbitrary. And it is this arbitrariness that led
to dramatic differences between long separated cultures,
such as that between America and France described in [11].
Yet, it is reflection on this rich variety of differentiated
cultures that is the source of much of social theory.

The slow and arbitrary evolution of institutions is roughly
comparable to that of Brand’s ‘site.’

3.3. Language evolves in shearing layers, reflecting the
richly differentiated structure of human practices

Particularly important for the fields of information systems
and software engineering is the fact that society reproduces
dispositions towards the use of language, grammar and
vocabulary, reflecting the richly differentiated structure of
society.

Bourdieu highlight’s this by pointing out the misleading
nature of dictionary definitions for words. He points out
that [9]:

concepts have no definitions other than systemic ones, and are
designed to be put to work empirically in systematic fashion.

In other words, concepts themselves form specialized
systems that exist for the purpose of linguistic exchange
within specific fields or contexts. Any sharing of ‘words’
between these concept systems is likely to be an arbitrary
coincidence — a remnant of a much earlier state of the
evolution of human society in which the differentiations
between fields did not exist in their current form.

Since a particular individual may participate in radically
different contexts, they may have several radically different
uses for each word. Thus, the meaning of a word within a
particular context can only ever become fully apparent to
those immersed within the context, and then only in its
pragmatic relation to other concepts in the context.

3.4. Since language has highly contextual meaning,
there is always a risk of misrecognitions

Additionally, much of language is indexical, with meaning
utterly dependent on the context in which it is used. This is
particularly acute in Japanese, as discussed in [6]. The
appropriateness of language is always at stake, at the levels
both of context (conversation) and field. Moreover, words
obsolesce, with fashionable words (like PCTE and C++)
being replaced with newer fashionable words (like World
Wide Web, Internet and Java), which themselves will
obsolesce.

All conversations involve both recognition and misrecog-
nition due to the very fact that ‘the same’ dispositions —
words, dress, posture, deportment, manners — are (re)used
in many contexts and fields. Conversation is as much about
determining what the context is (what language to use) and
isn’t (recovering from misrecognitions) as it is about instru-
mental action in an identified context.

Moreover, since many conversations are between people
who belonging to different fields and with different trajec-
tories, a common ground must be created for linguistic
exchanges to take place. Thus, for example, it is unreason-
able to assume that even the most apparently uniform of
professions, such as tax accounting, will be practiced using
the same language even at companies as ostensibly similar
as General Motors and Ford, or even between Ford’s
business units in North America and Europe.

4. REGROUNDING BUSINESS SPECIFICATIONS IN
DESIGN WISDOM AND SOCIAL THEORY

Today, the engineering of information systems for use in
businesses is usually more about innovation than invention.
That is how it should be in a steadily maturing industry.

Technology development is a qualitatively different kind
of engineering than technology application. In particular,
new technologies should usually emerge in the marketplace,
and not during application development.

It is against this background that we recommend informa-
tion modeling [5,38,39,57]. The resulting business specifi-
cation is a suitable basis for the careful yet opportunistic
application of structure-bearing media within the business.

4.1. Information systems as part of formative context,
along with other media and adaptive humans

As indicated earlier, our emphasis is on design as systemic
intervention into whole businesses. Businesses are open
systems composed of social and technological parts.

The value of information technologies lies in their ability
to enable (“informate” [63]) a ‘virtual space and time,’ free
from many of the bounds of physical space and time. As
such, their true value will come when people make innova-
tive use of that virtual space, and both for supportive and
formative purposes [14].

Thus we view context as providing both a supportive and
a formative function. Moreover, context should be achieved
through appropriate means. Far from expecting software to
solve all problems, we should pay holistic attention to
context. Software — indeed any formative element—
should only be incorporated into this holistic design when it
is an appropriate provider of a required function.

And we should always remember that the most flexible
‘medium’ for providing structure for people is other people.
This is because a person is an open, and highly differenti-
ated, system of dispositions [9] that can improvise new
structures, and in an ad hoc manner.

This is what we mean by coordination, and it is at its best
in empowered teams [25].

4.2. How IS relieves both individuals and teams from
constraints of space and time

An information system supports humans as they converse
and coordinate.

Firstly, technology can remove burdens of memory and
familiarity through context management, both for
individuals and teams. Recall that writing is an ancient

5

technological aid to memory and context sharing [12].
Context management involves identifying, defining, elabo-
rating, structuring, restructuring, indexing and retrieving
content and contexts [16]. It also involves the identification
of preexisting contexts, and context merge and split.

One thing that struck us about our earlier work on
business patterns [42-5] was how few there seemed to be of
the kind we were looking for. We can now explain this
small number of patterns and articulate our former intui-
tions. The earlier business patterns (such as ‘information
gathering’, ‘assessment’ and ‘satisfaction’) are all about
context creation, and recovery through conversation, and
there really are just a few ways of doing that.

Secondly, technology — media — can be used to handle
physical separation both in space and time, in presence and
in absence [58]. It can allow synchronous interaction across
a distance (telecommunication). It can locate and interrupt
people wherever they are (track-you-down technologies
such as pagers and mobile ’phones). Queuing technologies
can support asynchronous communications (e-mail and
voice mail). And routing technologies can support commu-
nication interception and redirection, ideally following
anthropologically sound informal social patterns such as
gatekeeper or hub.

Technology can overcome other burdens, but they are
beyond the scope of this paper.

Finally — in an attempt to further clarify our opinion as to
what IT does and does not offer — we draw a firm distinc-
tion between information and knowledge. For us, while
information can be stored in technology, only individual
people can have knowledge. Thus, there can be no knowl-
edge technologies, merely socially accepted, knowledge-
fostering, applications of structure-bearing media.

4.3. Information technology as structure-bearing media
that can also host virtual machines

We use the term structure-bearing media to refer to
technologies supporting geographically dispersed, possibly
asynchronous, ongoing human conversations. They include
‘pure’ technologies for communication (early telephones)
and ‘pure’ data and information processing, although this
purity is long gone and the distinction is obsolete.

We draw a distinction between structured and unstruc-
tured uses of structure-bearing media. This distinction is
extremely important, even though a contrast between struc-
tured and unstructured uses deliberately emphasizes ends of
a spectrum. E-mail and word processors are towards the
unstructured end (at which any structure in natural language
is largely ignored by the medium), while applications with
strong workflow and rigid forms are towards the other.

And we reuse Gelernter’s notion of virtual machine [21]
to introduce forms of information processing beyond the
basic ones listed above. These information processing
machines are ‘virtual’ in the sense that they are themselves
made out of ‘bits’ rather than ‘atoms.’

Virtual machines provide a spectrum of support for
individuals and teams, from the weakly structuring (such as
check-as-you-type spell checking in a word processor) to
the strongly structured (high-transaction-volume accounting
software at the core of a bank). As Gelernter emphasizes,
virtual machines can even be used to create yet further
virtual machines — this is what programming is all about.

One interesting class of virtual machine is able to recog-
nize structure within an otherwise unstructured medium.
This class of virtual machine — which includes that for
voice transcription — is of a qualitatively different kind to
that which operates upon preestablished structure. In the
opposite direction is the idea of ‘tangible bits’ [31].

4.4. When structure is there, specify it, then apply or
build a context-support machine to support it

A structured use of a structure-bearing media requires a
commitment to a language of discourse, and this is what a
business specification captures [39,41,42,44]. With a struc-
ture present, virtual machines can ‘process’ information in
accordance with operations (behavior) that have been speci-
fied in terms of that structure (invariant). They regulate the
discourse as they enable it.

Languages of discourse — concept systems — enable
conversations to take place following prescribed rules.
Each conversation makes sense in its own terms only. We
therefore and define a context as being a seat of a certain
logic, in which certain concepts and operations are relevant
and make sense a priori.

Yet all human conversations mix the highly contextual
with the common, and switch from focused to unfocussed
(multi-contextual) [21]. Thus software must support both
core concepts (structure), and freeform common usage.

A business specification is thus a collection of fragments,
each of which contains the invariant and operations of
either a single context or a class of similar contexts [44].

Additionally, for each context there is a need to choose an
appropriate context-support medium. We formerly termed
this business design [44], but now reserve that for the disci-
plines of the design of commercial organization.

Note that there already exists a rich variety of context-
support media, varying from word processors, spreadsheets,
blackboards, e-mail, discussion databases, electronic
markets, and so on [15,46,51]. We suspect that each of
Bourdieu’s ‘fields’ [9] — with its own invariant set of
dispositions, including “rules of the game” — has qualita-
tively different context support needs. Jacobs illustrates this
in her comparison of the moral precepts underlying the
guardian (political) and commercial (market) syndromes
[34]. She shows, for example, how attitudes towards the
making of commitments can differ dramatically. In ideal
commerce, people ‘dissent’ (that is, they refuse to make
commitments that they are not disposed to keep), whereas
ideal guardians use ‘deceit’ (that is, they believe that the
greater good is served by the occasional lie). Thus, we still
see considerable scope for innovation in the area of

6

context-support media, and in the study of how appropriate
each medium is for each kind of field or context.

Note that stylized language either works or fails. If it fails
then users need to fall back on their pragmatic common
sense language for what Habermas calls conversational,
discursive and strategic action [23-4,51,56]. Thus a choice
of an invariant for a context, albeit partially inherited from
involved practices, is a major (and epistemologically
problematic) ontological commitment [28].

Thus, in developing adaptive software, we should embed
all structure within a rich and fluid language-neutral
medium. Further, we should assume that all contexts will
need to be adapted, and that all invariants will slowly
evolve, and in a shearing layers manner. In other words,
software engineers should recognize linguistic phenomena
as being just what they are and encourage human linguistic
improvisation, innovation and invention.

4.5. Tradeoff and compromise: transfer versus coupling
in pursuit of inter-context coordination

We start with the intuition that, except for their inflexibility
and cost of maintenance, loose federations of legacy
systems provide adequate support to many businesses.

Conceptually, we think of a company’s information as
being added to and stored in a number of distinct ‘contain-
ers.’ Each ‘container’ stores information pertinent to a
single context. (Note that we are saying more than ‘one
container per class of context.’ Rather, we are saying ‘one
container per context instance.’)

Thus inter-context coordination can be understood from
the point of view of ‘propagation’ of newly discovered
information throughout an organization’s contexts, rather
than as the need for a single, integrated repository with
centralized and integrated storage of each real or virtual
‘thing’ [55].

The transfer of information between contexts should be
conceived of as a separate operation, just as it was before
writing was invented. As such it requires distinct — and
specialized — specification. And since contexts frequently
have quite different invariants, a transfer operation may
well have quite different source and target domains.

The very nature of inter-context exchanges in business
often leads to the innovative and explicit design of further
contexts, to support these translation and mediation opera-
tions. Many businesses have dedicated contexts (depart-
ments, procedures) in which specialists act as translators.
Indeed, some such contexts have only recently become
technologically feasible, such as those built upon data
mining technologies. We should also be aware of the slow
and steady evolution of fields, in which these interdisci-
plines become disciplines [48].

Yet an inter-context exchange can only occur between
contexts that are aware of each other. In general it is new
information that two parts of a company are dealing with
the same ‘thing,’ and thus need to coordinate and converse.

In some industries mutual awareness between contexts is
critical, and thus significant investments are made in mutual
awareness systems. For example, insurance companies and
banks seek to prevent misguided or fraudulent behavior
(such as bad debts, multiple claims or overinsurance) by
securing access — albeit not necessarily immediate — to all
coverages and claims involving a particular household
across the entire industry. Equally, for practices such as
target marketing to be effective, mutual awareness and
opportunity pooling are required across a company’s lines
of business. However, in neither of these cases is there any
need for a truly integrated operational view of the
enterprise. All that is needed is mutual awareness, and at a
reasonable cost.

Mutual awareness technology is ultimately about the
sharing of ‘thing’ identity between contexts [26-7], and the
provision of means for searching for contexts that involve a
particular ‘thing.’ It is about having directories of what
conversations (contexts) are ongoing, and whom to contact
to find out more. It is about “the relationship[s] between the
objectives of two or more parties” that may lead to coopera-
tion, competition or conflict [2]. It is about end user-level
alarms, notification schemes, ‘protocols,’ ‘locking’ or
whatever is required when mutual awareness develops.

Of course, at the level of business or application design,
an explicit choice may be made to in some way couple
contexts at the level of their containers. This can result in
more or less coupled or integrated data stores [55] —
varying from the loose federation to the integrated— and in
some cases to correspondingly ‘integrated’ data schemas.

 However, context integration designs in a hard-to-adapt
commitment to the coupling of practices and action. This
should only be done if the commitment to coupling also
exists at the social level, and the implied restrictions on
adaptability are fully understood and committed to by the
user organization. Otherwise it builds rigidity into the
technology, and breeds resentment at the social level.

4.6. Misrecognition of object-orientation by analysis
and design methods

As Alan Kay pointed out in his keynote speech at OOPSLA
’97, the term ‘object’ of ‘object orientation’ is a bad misno-
mer for an encapsulating structuring element.

Originally he was inspired more by a biological than a
physical metaphor. Highly complex organisms are built out
of cells that encapsulate lots of messy ‘stuff.’ Why not do
the same with software? Thus he first considered using the
term ‘cell,’ but later reluctantly accepted the word ‘object.’

Unfortunately, many of the conventional practices
surrounding object-orientation are built upon this misrecog-
nition of structure as behavior. Domain things do not — in
general — behave in and of themselves. They do not, in
general take on responsibilities as implied in [62]. Instead,
information about domain things is operated upon, and
usually by people. Attributes are ascribed to them from the
outside, as acknowledged in Fowler’s [18] observation- and

7

measurement-related analysis patterns, which reflect the
subjectivity and time variance of ‘attributes.’

There is a subtle distinction at work here, largely because
in the case of virtual machines — such as accounting
systems — there may well be virtual things, such as
accounts, and it may well make sound engineering sense to
implement these virtual things as objects (cells). Yet, we
assert, many of the things that you want to make virtual —
like accounts, plans, contracts, and so on — are themselves
simply culturally accepted reifications of culturally repro-
duced contexts. Indeed, anything that has traditionally been
a unit of linguistic exchange or record, written or unwritten
is already a reified (‘thingified’) context.

In general, all support for humans talking about things, be
they virtual or not, contexts or not, are highly ephemeral,
and should be supported by shearing layers of a suitable
ephemerality. Contexts should be recognized as such, even
when they already exist reified as ‘objects’ of the domain.
Thus it is important to abandon general purpose system
development technologies in favor of distinct techniques
and technologies (i) for the design of virtual, context-
supporting machines and (ii) for support of humans using
language to discuss things, be they virtual and ‘real.’

4.7. Misrecognition of the existence of domain models
and of change and variation

Another form of misrecognition is that suggested by the
‘glossary of terms’ and the ‘dictionary.’ A consequence of
this misrecognition is the desire to model industry-wide
domain language.

In interviewing subject matter experts in an attempt to
construct a domain model for the distribution industry, we
were struck by the sheer diversity across the industry: in
culture, organization and language.

The language and practices of this industry are highly
contextual. Even their contexts are highly contextual. It
seems that economic and social forces lead companies to
differentiate themselves in terms both of their external,
environmental context (market niches) and internal contexts
(organization).

Instead, we recommend a search for both generic and
industry-specific context-support machines, rather than the
modeling of domain language which simply varies too
much.

5. SUMMARY AND FUTURE DIRECTIONS

This paper is part of an ongoing joint study between IBM
Research and IBM's Advanced Business Institute. We are
seeking to further both business and software engineering
research through interdisciplinary study.

In this paper, we have outlined how to design information
systems as shearing layers, in terms of careful application
of structure-bearing media in the spectrum from structured
to unstructured use. In doing so, we have drawn a strong
distinction between technology and the application of
technology.

Information technology is expected to provide a spectrum
of support from highly structured ‘formative context’ for
novices through to situated meaning [6] and adaptable
virtual machines for experts. In general, structured uses are
for the novice, while unstructured uses are for experts.
Companies must allow novices to be safely productive as
they learn, yet allow experts to be creative and adaptive.

Thus we have built upon social theory of education
(reproduction) and of practice, and that of Pierre Bourdieu
in particular [8,9]. While we are not the first to build on
social theory, we do not necessarily “call [...] for systems
developers to acquire ‘refined skills in organization analy-
sis’” [61]. Rather, we make the methodological observation
that if systems developers have undue difficulty producing
an information model for a particular context, then they
should conclude that the language used in the context is still
maturing, and thus that all but slightly structured uses of
structure-bearing media are inappropriate.

As for application development, not only is there no need
to directly represent domain concepts in code, it is
frequently better not to. Yet many development methodolo-
gies recommend precisely that (for example, in Wirfs-
Brock’s responsibility driven design [62]). With domain
concepts in the code, the code has to be rewritten as the
user’s language evolves, and today that means dragging in a
software engineer.

The only kinds of real world object that we would
consider implementing as objects — or preferably, using
Alan Kay’s original term, as cells — are things that reify
contexts, including accounts, forms, plans and other previ-
ously written forms of record-keeping and communication.
And even then, cells should only be used to implement
context-support machines. Even for a context-support
machine such as the accounting engine specified in [35],
records of information about things — real or virtual — and
intended for human consumption, should probably not be
implemented as cells.

Although the mathematical expression of information
modeling [32-3,39] is correct (from the perspective of
mathematics and computer science), we prefer to use the
terminology of linguistics — homonym, antonym, synonym,
connotation, denotation and so on — for discussing issues
such as distinction and identity.

We have shown that the idea of requirements divorced
from design is misguided. Instead, we should build upon
published design wisdom. As we have seen, we need to
apply a highly contextual, shearing layers approach — like
that of Stewart Brand [10] — to each of language, context
determination and context design. We should not unneces-
sarily or overly couple contexts that may inevitably have
differing rates of change and degrees of structure. Any form
of rigid and monolithic incorporation of language prescrip-
tions into software prevents adaptive people from adapting
software to evolving contexts.

In particular we have suggested how we can ‘let emergent
things emerge naturally.’ Since businesses are becoming

8

uneasy [50] about technical approaches such as forecasting,
so should software engineers. The question for all design-
ers must be: how much do you design into context, and how
much do you leave to people?

Equally, as Brand suggests, all complex designed things
and their users should be scrutinized through the use of a
metaphorical time lapse camera. He points to a number of
techniques that allow buildings and their occupancy to be
studied over time, including the post-occupancy evaluation
(POE) and John Abrams’ ‘Book’ [10]. Presumably software
engineering should have counterparts to these.

As designers, we consider it to be an ethical imperative to
respond to Alexander’s criticism. Behavioral specification
and the distinction between context and coordination are
our response.

ACKNOWLEDGMENTS
We would particularly like to thank members of the Enter-
prise Builder and Subject-Oriented Programming teams in
IBM Research, and the Sense-and-Respond curriculum
team at IBM’s Advanced Business Institute — in particular,
Bard Bloom, Siobhan Clarke, Steve Haeckel, Bill Harrison,
Marianne Kosits, Harold Ossher, Darrell Reimer, Peri Tarr
and Mark Wegman — for ongoing discussions on design in
general, and organization design and application develop-
ment in particular. We would also like to thank John Baker,
Trevor Hopkins, Haim Kilov, Doug McDavid, Andy
Mitchell, Tim Stone, Colin Tully, John Vlissides and May
Warren for related conversations over several years,
together with the anonymous reviewers for their comments
on this paper.

REFERENCES
1 Russell Ackoff, Fred Emery. On Purposeful Systems. Intersys-

tems Publications, 1972.
2 Russell Ackoff. The Art of Problem Solving, Wiley, 1978.
3 Russell Ackoff. Creating the Corporate Future. Wiley, 1981.
4 Russell Ackoff. The Democratic Corporation: a radical

prescription for recreating corporate America and rediscov-
ering success. Oxford University Press, 1994.

5 Ian F Alexander. Requirements engineering with Kilov object
models. In [41].

6 Jane M Bachnik, Charles J Quinn editors. Situated Meaning:
inside and outside in Japanese self, society and language.
Princeton University Press, 1994.

7 Pierre Bourdieu. Language and Symbolic Power. Harvard
University Press, 1990.

8 Pierre Bourdieu, Jean-Claude Passeron. Reproduction in
education, society and culture. 2nd edition, Sage, 1990.

9 Pierre Bourdieu, Loic JD Wacquant. (1992) An invitation to
reflexive sociology. University of Chicago Press, 1992.

10 Stewart Brand. How buildings learn: what happens after
they’re built. Viking, 1994.

11 Raymonde Caroll. Cultural Misunderstandings: The French-
American Experience. Carol Volk translator, University of
Chicago Press, 1984.

12 Edward Chiera. They Wrote on Clay: The Babylonian Tablets
speak today, George G Cameron editor, University of Chicago
Press, 1938.

13 C West Churchman. The Design of Inquiry Systems. Basic
Books, 1971.

14 Claudio U Ciborra. Teams, Markets and Systems: business
innovation and information technology. Cambridge UP, 1993.

15 Wolfram Conen, Gustaf Neumann editors. Coordination
technology for collaborative applications: organizations,
processes and agents. Lecture Notes in Computer Science
1364, Springer-Verlag, 1998.

16 Basil Doudnikoff. Information Retrieval. Auerbach, 1973.
17 Robert L Flood. Solving Problem Solving: a potent force for

effective management. Wiley, 1995.
18 Martin Fowler. Analysis Patterns: Reusable Object Models.

Addison-Wesley, 1997.
19 Richard P Gabriel. Patterns of Software: tales from the

software community. Oxford University Press, 1996.
20 Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.

Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

21 David Gelernter. The Muse in the Machine. Free Press, 1994.
22 Robert Gibson-Jarvie. The City of London: a financial and

commercial history. Woodhead-Faulkner, 1979.
23 Jurgen Habermas. The Theory of Communicative Action,

Volume 1: Reason and the rationalization of society. 1981.
English translation, Beacon Press, 1984.

24 Jurgen Habermas. The Theory of Communicative Action.
Volume 2: Lifeworld and system: a critique of functionalist
reason. 1981, English translation, Beacon Press, 1989.

25 Stephan Haeckel. Adaptive Enterprise Design: The Sense-
and-Respond Model. Planning Review, May/June 1995,
Vol.23, No.3.

26 William Harrison, Haim Kilov, Harold Ossher, Ian
Simmonds. From Dynamic Supertypes to Subjects: A Natural
Way to Specify and Develop Systems. IBM Systems Journal,
Volume 35, Number 2, 1996, pp. 244-256.

27 William Harrison, Harold Ossher. Subject-Oriented Program-
ming (A Critique of Pure Objects). Proceedings of the Confer-
ence on Object-Oriented Programming, Systems, Languages,
and Applications, ACM, Washington, DC, September 1993,
pp. 411-428.

28 Rudy A Hirscheim, Heinz-Karl Klein, Kalle Lyytinen. Infor-
mation Systems Development and Data Modeling: Concep-
tual & Philosophical Foundations. Cambridge University
Press, 1995.

29 Patrick Humphreys et al editors. Implementing Systems for
Supporting Management Decisions: Concepts, methods and
experiences. Chapman and Hall, 1996.

30 Aldous Huxley. Brave New World Revisited, 1958.
31 Hiroshi Ishii, Brygg Ullmer. Tangible Bits: Towards seamless

interfaces between people, bits and atoms. CHI ’97.

32 ISO/IEC JTC1/SC21/WG7. Open Distributed Processing —
Reference Model: Part 2: Foundations. (ISO 10746-2 / ITU-T
Recommendation X.902, February 1995).

33 ISO/IEC JTC1/SC21. Information Technology — Open
Systems Interconnection — Management Information Systems
— Structure of Management Information — Part 7: General
Relationship Model. ISO/IEC 10165-7, 1995.

34 Jane Jacobs. Systems of Survival. Vintage, 1992.

35 Haim Kilov, Allan Ash. How to ask questions: handling
complexity in a business specification. In [41].

36 Haim Kilov, William Harvey editors. Object-oriented behav-
ioral specifications. Kluwer Academic Publishers, 1996.

9

37 Haim Kilov, William Harvey editors. Proceedings of the 6th
OOPSLA Workshop on Behavioral Semantics of Object
Oriented Specifications. San Jose, USA, October 1996.

38 Haim Kilov, Helen Mogill, Ian Simmonds. Invariants in the
Trenches. Chapter 6 of [36].

39 Haim Kilov, James Ross Information Modeling: an Object-
oriented Approach. Prentice-Hall, Englewood Cliffs, NJ,
1994.

40 Haim Kilov, Bernhard Rumpe editors. Proceedings of
ECOOP ’97 Workshop on Precise Semantics for Object-
Oriented Modeling Techniques. Jyvaskyla, Finland, June
1997, Technical University of Munich, TUM-I9725.

41 Haim Kilov, Bernhard Rumpe, Ian Simmonds editors.
Proceedings of OOPSLA ’97 Workshop on Object-Oriented
Business Specifications. Atlanta, Georgia, October 1997,
Technical University of Munich, TUM-I9737.

42 Haim Kilov, Ian Simmonds. Business patterns: reusable
abstract constructs for business specification. In [29], pp.
225-248.

43 Haim Kilov, Ian Simmonds. Business patterns and
viewpoints. Proceedings of the Workshop on Viewpoints,
ACM Symposium on Foundations of Software Engineering,
San Francisco, USA, October 1996.

44 Haim Kilov, Ian Simmonds. How to correctly refine business
specifications, and know it. In [37]. Also IBM Research
Report RC 20563 (91041) 9/3/96.

45 Haim Kilov, Ian Simmonds. Business rules: from business
specification to design. In [40]. Also IBM Research Report
RC 20754 (91961) 3/4/97.

46 Mark Klein. Coordination science: challenges and directions.
pp. 161-176 of [15].

47 Ellen E Kittell. From Ad Hoc to routine: A case study in
medieval bureaucracy. University of Pennsylvania Press,
1991.

48 Thomas Kuhn. The Structure of Scientific Revolutions.
Second edition, Chicago University Press, 1970.

49 Ian I Mitroff, Harold A Linstone. The Unbounded Mind:
breaking the chains of traditional business thinking. Oxford
University Press, 1993.

50 Carl Mitcham. Thinking through Technology: the path
between engineering and philosophy. Chicago UP, 1994.

51 Ojelanki K Ngwenyama, Kalle J Lyytinen. Groupware
environments as action constitutive resources: a social action
framework for analyzing groupware technologies. Computer
Support Cooperative Work: the Journal of Collaborative
Computing, volume 6, pp. 71-73, Kluwer, 1997.

52 Wanda J Orlikowski, Geoff Walsham, Matthew R Jones,
Janice I DeGross editors. Information technology and
changes in organizational work. Chapman and Hall, 1996.

53 Michael Polanyi. The Tacit Dimension. Doubleday, 1966.
54 Peter M Senge. The Fifth Discipline: the art and practice of

the learning organization. Currency Doubleday, 1990.
55 Dick Schefstrom. System development environments: contem-

porary concepts. pp. 3-95 in Dick Schefstrom, Ger van den
Broek editors, Tool Integration: Environments and Frame-
works, Wiley, 1993.

56 Wes Sharrock, Graham Button. On the relevance of Haber-
mas’s Theory of Communicative Action for CSCW. Computer
Support Cooperative Work: the Journal of Collaborative
Computing, volume 6, pp. 369-389, Kluwer, 1997.

57 Mark Shafer. Experiences related to integrating information
modeling with the business requirement definition process at
the United Services Automobile Association (USAA) P&C
Insurance Company. in [41].

58 Jim Shedden, Jonas Mekas editors, Presence and Absence:
The Films of Michael Snow. The Michael Snow Project.
Knopf Canada, 1995.

59 Bernhard Thome. Systems Engineering: Principles and
Practice of Computer-Based Systems Engineering. Wiley,
1993.

60 Colin Tully. System Development Activity. Chapter 3 of [59].
61 Chris Westrup. Transforming organizations through systems

analysis: deploying new techniques for organizational analy-
sis in IS development. pp. 157-176 of [52].

62 Rebecca Wirfs-Brock, Brian Wilkerson, Lauren Wiener.
Designing Object-Oriented Software. Prentice-Hall, 1990.

63 Shoshana Zuboff. In the Age of the Smart Machine: the future
of work and power. Basic Books, 1988.

10

	Cover Page
	ABSTRACT
	1. A RESPONSE TO ALEXANDER’S CRITICISM
	1.1.Software engineering’s ‘right thing’ is constructing information tools that can be adapted by adaptive purposeful teams a
	1.2. Deployment of ‘designed things’ including software involves intervening in a larger system
	1.3. Rephrasing the business specification / business design distinction as context and coordination
	1.4. Business adaptiveness comes from carefully distinguishing context and coordination

	2. INDIVIDUALS AND GROUPS ADAPT DESIGNED THINGS ALONG SHEARING LAYERS
	2.1. Design and time: adaptation is in response to qualitatively different kinds and rates of change
	2.2. Inquiry is a feedback loop through which contexts are adapted as a result of coordination experience

	3. SOCIETY ADAPTS BOTH LANGUAGE AND PRACTICES IN SHEARING LAYERS
	3.1. Individual learning occurs on a trajectory through ad hoc and designed formative contexts
	3.2. Practices shared across teams or industries are slowly evolving and durable, with occasional discontinuities
	3.3. Language evolves in shearing layers, reflecting the richly differentiated structure of human practices
	3.4. Since language has highly contextual meaning, there is always a risk of misrecognitions

	4. REGROUNDING BUSINESS SPECIFICATIONS IN DESIGN WISDOM AND SOCIAL THEORY
	4.1. Information systems as part of formative context, along with other media and adaptive humans
	4.2. How IS relieves both individuals and teams from constraints of space and time
	4.3. Information technology as structure-bearing media that can also host virtual machines
	4.4. When structure is there, specify it, then apply or build a context-support machine to support it
	4.5. Tradeoff and compromise: transfer versus coupling in pursuit of inter-context coordination
	4.6. Misrecognition of object-orientation by analysis and design methods
	4.7. Misrecognition of the existence of domain models and of change and variation

	5. SUMMARY AND FUTURE DIRECTIONS
	ACKNOWLEDGMENTS
	REFERENCES

